Axisymmetric shell model using a three-field dual-mixed variational principle
نویسندگان
چکیده
منابع مشابه
A variational principle for stationary, axisymmetric solutions of Einstein’s equations
Stationary, axisymmetric, vacuum, solutions of Einstein’s equations are obtained as critical points of the total mass among all axisymmetric and (t, φ) symmetric initial data with fixed angular momentum. In this variational principle, the mass is written as a positive definite integral over a spacelike hypersurface. It is also proved that if an absolute minimum exists then it is equal to the ab...
متن کاملA Dual-Mixed Approximation Method for a Three-Field Model of a Nonlinear Generalized Stokes Problem
In this work a dual-mixed approximation of a nonlinear generalized Stokes problem is studied. The problem is analyzed in Sobolev spaces which arise naturally in the problem formulation. Existence and uniqueness results are given and error estimates are derived. It is shown that both lowest-order and higher-order mixed finite elements are suitable for the approximation method. Numerical experime...
متن کامل$(varphi_1, varphi_2)$-variational principle
In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm, such that $f + g $ attains its strong minimum on $X. $ This result extends some of the well-known varitional principles as that of Ekeland [On the variational principle, J. Ma...
متن کاملVariational Principle for Mixed Classical-quantum Systems
An extended variational principle providing the equations of motion for a system consisting of interacting classical, quasiclassical and quantum components is presented, and applied to the model of bilinear coupling. The relevant dynamical variables are expressed in the form of a quantum state vector which includes the action of the classical subsystem in its phase factor. It is shown that the ...
متن کاملA Variational Principle for Model-based Morphing
Given a multidimensional data set and a model of its density, we consider how to define the optimal interpolation between two points. This is done by assigning a cost to each path through space, based on two competing goals-one to interpolate through regions of high density, the other to minimize arc length. From this path functional, we derive the Euler-Lagrange equations for extremal motionj ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mechanics
سال: 2014
ISSN: 1586-2070
DOI: 10.32973/jcam.2014.006